Iris recognition papers in the top journals in 2017

Top journals:

– IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI)

– Pattern Recognition (PR)

– IEEE Transaction on Image Processing

– IEEE Transaction on Forensics and Security

– Pattern Recognition Letters (PRL)

– Computer Vision and Image Understanding (CVIU)

———————————————————————————————————–

2017 – Journals

1. Cancellable iris template generation based on Indexing-First-One hashing

Lai, Yen-Lung ; Jin, Zhe; Jin Teoh, Andrew Beng; Goi, Bok-Min; Yap, Wun-She; Chai, Tong-Yuen; Rathgeb, Christian Source: Pattern Recognition, v 64, p 105-117, April 1, 2017

2. Multi-patch deep sparse histograms for iris recognition in visible spectrum using collaborative subspace for robust verification

Raja, Kiran B. ; Raghavendra, R.; Venkatesh, Sushma; Busch, Christoph Source: Pattern Recognition Letters, v 91, p 27-36, May 1, 2017

3. Results from MICHE II – Mobile Iris CHallenge Evaluation II

De Marsico, Maria ; Nappi, Michele; Proença, Hugo Source: Pattern Recognition Letters, v 91, p 3-10, May 1, 2017

4. Iris matching by means of Machine Learning paradigms: A new approach to dissimilarity computation

Aginako, Naiara; Echegaray, Goretti; Martínez-Otzeta, J.M.; Rodríguez, Igor; Lazkano, Elena; Sierra, Basilio Source: Pattern Recognition Letters, v 91, p 60-64, May 1, 2017

5. Optimal Generation of Iris Codes for Iris Recognition

Hu, Yang ; Sirlantzis, Konstantinos; Howells, Gareth Source: IEEE Transactions on Information Forensics and Security, v 12, n 1, p 157-171, January 2017

6. FIRE: Fast Iris REcognition on mobile phones by combining colour and texture features

Galdi, Chiara; Dugelay, Jean-Luc Source: Pattern Recognition Letters, v 91, p 44-51, May 1, 2017

7. Periocular and iris local descriptors for identity verification in mobile applications

Aginako, Naiara; Castrillón-Santana, Modesto; Lorenzo-Navarro, Javier; Martínez-Otzeta, José María; Sierra, Basilio Source: Pattern Recognition Letters, v 91, p 52-59, May 1, 2017

8. Kurtosis and skewness at pixel level as input for SOM networks to iris recognition on mobile devices

Abate, Andrea F.; Barra, Silvio; Gallo, Luigi; Narducci, Fabio Source: Pattern Recognition Letters, v 91, p 37-43, May 1, 2017

9. Toward more accurate iris recognition using cross-spectral matching

Nalla, Pattabhi Ramaiah; Kumar, Ajay Source: IEEE Transactions on Image Processing, v 26, n 1, p 208-221, January 2017

10. Combining iris and periocular biometric for matching visible spectrum eye images

Ahmed, Nasir Udin; Cvetkovic, Slobodan; Siddiqi, Erfanul Hoque; Nikiforov, Andrey; Nikiforov, Ilia Source: Pattern Recognition Letters, v 91, p 11-16, May 1, 2017

11. “Mobile Iris CHallenge Evaluation part II (MICHE II)”

De Marsico, Maria; Nappi, Michele; Proença, Hugo Source: Pattern Recognition Letters, v 91, p 1-2, May 1, 2017

12. Certain investigation on iris image recognition using hybrid approach of Fourier transform and Bernstein polynomials

Ramya, M.; Krishnaveni, V.; Sridharan, K.S. Source: Pattern Recognition Letters, v 94, p 154-162, July 15, 2017

13. A deep learning approach for iris sensor model identification

Marra, Francesco; Poggi, Giovanni; Sansone, Carlo; Verdoliva, Luisa Source: Pattern Recognition Letters, December 23, 2016 Article in Press

14. Long range iris recognition: A survey

Nguyen, Kien; Fookes, Clinton; Jillela, Raghavender; Sridharan, Sridha; Ross, Arun Source: Pattern Recognition, v 72, p 123-143, December 2017

15. Recognition of Image-Orientation-Based Iris Spoofing

Czajka, Adam; Bowyer, Kevin W.; Krumdick, Michael; Vidalmata, Rosaura G. Source: IEEE Transactions on Information Forensics and Security, v 12, n 9, p 2184-2196, September 2017

16. A code-level approach to heterogeneous iris recognition

Liu, Nianfeng; Liu, Jing; Sun, Zhenan; Tan, Tieniu Source: IEEE Transactions on Information Forensics and Security, v 12, n 10, p 2373-2386, October 2017

 

———————————————————————————————————–

Advertisements

Tensorflow 0.12, Ubuntu16.04, CUDA 8

Task: install Tensorflow framework on Ubuntu 16.04 with CUDA 8.0

Update the system

  • Install build essentials:
    • sudo apt-get install build-essential
  • Install latest version of kernel headers:
    • sudo apt-get install linux-headers-uname -r

Install CUDA

  • Install curl (for the CUDA download):
    • sudo apt-get install curl
  • Download CUDA 8.0 to Downloads folder
  • Make the downloaded installer file runnable:
    • chmod +x cuda_8.0.44_linux.run
  • Run the CUDA installer:
    • sudo ./cuda_8.0.44_linux.run --kernel-source-path=/usr/src/linux-headers-`uname -r`/
      • Accept the EULA
      • Do NOT install the graphics card drivers (since we are in a virtual machine)
      • Install the toolkit (leave path at default)
      • Install symbolic link
      • Install samples (leave path at default)
  • Update the library path
    • echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrc
    • echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/lib' >> ~/.bashrc
    • source ~/.bashrc 

Install pip

  • Install pip:
    • sudo apt-get install python-pip python-dev

Install Tensorflow

  • Install Tensorflow:
    • pip install tensorflow

Test Tensorflow:

  • Test Tensorflow:
    • python
    • import tensor flow as tf

Congralutations!!! You have successfully installed Tensorflow into Ubuntu 16.04 with CUDA 8.0. Let’s enjoy it now.